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We consider the sequence of errors (E,(f)), of best uniform approximation to a
function fe C[ —1, 1] by algebraic polynomials. It is shown that the regularity of
f in subsets of [ —1,1] implies certain conditions on the sequence (E,(f)),.
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1. INTRODUCTION AND STATEMENT OF THE RESULTS

For a given complex-valued function fe C[ —1, 1] let

E,(f):=min HffPH[-l,l]: Hf*Pn*H[—l,l]

pePy
denote the error of the best uniform approximation p* =p*(f) to fin the
set P, of algebraic polynomials of degree at most ne N,. By the classical
Weierstrass approximation theorem we know that E,( /) \0. The construc-
tion of functions having prescribed error sequences was first treated by
Bernstein [1].

THEOREM A (Bernstein; cf. [4, p. 121]). Let be given a sequence (E,),
with E,~0. Then there exists a function fe C[ —1, 1] such that E,(f)=E
for all ne N,

n

Recently, Professor Gaier raised the question of whether the function f
in Theorem A can be constructed such that f is not only continuous on
[ =1, 1] but also regular in subsets of [ —1, 1]. In the present paper we
show that this is not possible for arbitrary sequences (E,), with E,\0. It
will turn out that the regularity of fin subsets of [ —1, 1] implies that there
can not be too abrupt “jumps” in the error sequence (E,(f)),.

To state the results, let (E£,), be a sequence with E,~\0 and

r:=limsup E}".
n— oo
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In the following we denote by f an arbitrary function in C[ —1, 1] such
that

E(f)=E, forall neN,.

Further, let g(z):=log |z +(z>—1)"?| denote the Green’s function of
[ —1, 1]¢ with pole at oo and C, :={z: g(z) =log(s)}, s=1. For s=1, we
have C;=[ —1, 1], while for s > 1 the level curve C, is given by the bound-
ary of an ellipse with foci at —1 and 1. It is well known ([9, p. 79]) that

1 . .. .
—=sup {s:f is holomorphic in the open ellipse bounded by C,}.
r

1.1. Results for Real-Valued Functions

THEOREM 1. Let r=1 and suppose that there exists a subsequence L of
N with lim,,., E}" =1 such that

. FE
5= lim =2+

nel

<1,

n

and

. E
A:= sup limsup—"—>0.
e (0, 1) nel [an]

Let f be real-valued and regular in the open set Ac[ —1,1].
Then the following properties hold:

(a) If n=0 and p;_, ,, denotes the equilibrium distribution of
[ =1, 1], then we have

U (A)<T—4

(b) Ifi=1, then A= .

From this result one can derive the following Hadamard-type gap
theorem:

THEOREM 2. Let r=1 and suppose that there exists a subsequence
(M) en, of N such that for all ke Ny,

n
Ny
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and
En:E}1k+l fol"a” nk+l<n<nk+l‘

Let f be real-valued.
Then the following properties hold:

(a) Ifliminf, . E,"™ <1, then f has no regular point in [ —1,1].

(b) If lim,_, ., E,/"=1 and E,=O(n"") for some >0, then f has
no regular point in [ —1, 1].

In case re(0, 1), Theorem 5 states an analogous result without needing
the O-condition which is assumed in part (b) of Theorem 2. The method
of proof of Theorem 5 cannot be applied if r=1.

1.2. Results for Complex-Valued Functions

For complex-valued functions f=Re f+iIm fe C[ —1, 1], it is easy to
see that f'is regular at some point x,€[ —1, 1] if and only if its real part
Re f and imaginary part Im f (defined for xe[ —1, 1]) are both regular
at x,. Thus, Theorems 1 and 2 may be applied to the error sequences of
Re f and Im f to obtain estimates on the “size” of sets where f can be
regular.

The following estimates are based on the behaviour of (E,),=(E,(f)),.

THEOREM 3. Let r=1 and suppose that there exists a subsequence L of
N with lim,_, EY"=1 such that

E
;7:=lim2—+'=0,

nel n

and

. E,
A:= sup limsup ——>0.
axe(0,1) nel [an]
Let f be regular in the open set Ac[ —1,1].
Then, if up _, 14 denotes the equilibrium distribution of [ —1, 1], we have

A
M1, 1](A) <1 o

If E,.,/E, tends to zero very rapidly for some subsequence L, it is not
necessary to consider the behaviour of the foregoing errors Ej,,;:
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THEOREM 4. Let re (0, 1] and suppose that there exists a subsequence L
of N such that

1n+1

lim E)*=r  and  limsup E}"?

nel

<r.

nel
Then f has no regular point on C,.

Remark. In Theorem 4 it is a necessary assumption that lim,_, E}/"=r.

It is possible to construct a sequence (E,,), with r =1 and a corresponding
function f which is regular in (—1, 1), such that for a suitable subsequence
L we have

lim E}/* T <lim E)" <.

nel nel

In case f'is regular on [ —1, 1], i.e., r <1, one can derive from Theorem
4 the following Hadamard-type gap theorem.

THEOREM 5. Let re(0, 1) and suppose that there exists a subsequence
(M) en, of N such that for all ke N,

N 41
ny

=p>1

and
E,=E, .\ forall n+1<n<ng,,.

Then f has no regular point on C,,.

The proof of Theorem 4 and Theorem 5 is based on methods of har-
monic majorization and can be extended to the case of uniform approxima-
tion on more general compact sets in the complex plane.

2. PROOFS

Proof of Theorem 1. Since f is real-valued, there exists for each ne N,
a set 4, of alternation points

—1<x, < <X, ,4.<1

n, 1

of the error function f—pJ*, ie.,

(f—pH)(x,;)=+(-1)VE, forall je{l,..n+2}.
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The set A4, defines an extremal signature for f—p* (cf. [6, p. 76]) which
consists of exactly n+2 points. We put w,(x):= j”:f (x—x, ;) and
ti= (2027 (1 wi(x,, )D) " By

Ly

=— " je{l,.,n+2},
|M}n(xn,j)| J { }

Iun(xn,j) :

a discrete measure u, of total mass one is defined on the set 4,,, which is
associated with the extremal signature on A, ([ 6, p. 78]). From properties
of extremal signatures ([ 6, p. 76]) it is known that

n+2

Z :un(xn,j) (f_p:zk)(xn,j) p(xn,j) = 0

j=1
holds for every pe P,,.

1. First, we consider the measures u,,, ne L.

Let be given a Borel set B[ —1, 1] with b:=u_; 7(B)€(0, 1).

Let m,, denote the number of points in Bn A4, and let b, :=pu,(B).

In ([2, Theorem 1]) it was proved that certain subsequences of the
unit counting measures of any n+2 Fekete points of {xe[—1,1]:
I(f—p¥)(x)|=E,} converge to u , ;;in the sense of weak convergence.
Following the proof of Theorem 1 in [2] one can see that the same holds
for the subsequence L of the unit counting measures of A4,. Hence, we
obtain

: n,,
lim ——=b=u;_, 11(B). (2)

nel N+ 2
We have (cf. for example [2, p.362])

. . 1
7, =min Hxn+1 —p(x)HA"<m1n HXVH—l*P(x)H[—l, 11~ ~n"
PEP, pPeP, 2

Since A, contains an extremal signature for f—pX*, it follows that
([6,p.78])

E,=min | f—p| [—1,1] =min Hf—pHA,,»
peP, pPeEP,

and we can follow an argument of Kro6 and Saff ([ 3, Lemma 2.3]) to
obtain

tn En_Er1+l 1_En+1/En
Vnt =

= = , 3
1/2n En+En+l 1+En+1/En ( )
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and therefore
1—
y:=1lim infyn>J>0.
nel 1 + n
Let V, denote the n+ 2 point discriminant of the set 4,, i.e.,

n+2 n+2 2 n+2
Vn::<l_[ 1_[ |xn,j_xn,k|> = l_[ hv’n(xn,j)l'

j=1k=j+1 =1

We show that

bl —p Y1 +2—mn 1/(n+2)
L <[y by |
m

th(n + 2 _ mn)n+2fm,,

To prove this, let n be fixed and consider the problem of finding the

supremum of
, t(é) <n +2 1 > —1
= = Zj

J=1

among all £ =(¢&4, ..., &, ,) satisfying the restrictions

&>0 forall je{l,..,n+2},

n—+2 1
=[] &=V, and wé&:=1&Y 7= b
j=1 jeJ >j

where J< {1, ..,n+2} is an arbitrary subset of indices consisting of m,
points. If ¢&; —>0 or &;— oo for some je{l,..,n+2}, we obtain #&)— 0,
and therefore a global maximum of ¢ must be attained for some point &*.
By the theorem of Lagrange, there exist 4,, 4, € R such that

ov

0
5?1(5*) Mz € )+/lzaf (€9)=0  forall je{l,..n+2}.

A simple computation gives

cr =08l jed
and

(E*)(n+2—m,)
1—b,

EF = forall je{l,..,n+2}\J
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Thus, we have

n+2 * ny * 2_ n+2—my,
v éj*:<t(éb) mn> <t(é o2 m,,>> |

j=1 n

which yields

1= (W, )]s oo WX, 42) ) S U(EF)

bm”(l—b )n+27m,, >1/(n+2)
_ n n

_< ”mz1n(n+2_mn)n+27mn (4)

If 4, ., denotes the discriminant of the n+ 2 Fekete points of [ —1, 1],
then V,<4,_.,, and by ([5, p. 422]) it follows that

1

2n2+2n. (5)

A, . »~const(n+2)"T2+14

Combining (3), (4), and (5) gives

y 1. bz1,1(l_bn)n+2—mn 1/(n+2)
non n n m:ln"(n+2*mn)n+27mn

bm”(l _bn)n+27m,, 1/(n+2)

n
m™(n+2—m,)" 2"
1 bﬂm"(l _bn)n+27m,, >l/(n+2)

2 n 2—my

2n +2n mln" (n+2_mn)n+ m,

<( n+2

< <2 const (n+2)" 214
for all sufficiently large n e N. By (2) it follows that

1 —
0<——T<y—liminfy,

1+7’] nel
bm”(l —b )n+27m,1 1/(n+2)
<liminf( (n+2)"*2 —2 “
nel <( ) mZ1,7(n+2_mn)n+2—m”
bm,,/(n+2)(1 —b )1 —my/(n+2)
=lim inf 1 o

nel (mn/(n+2)))11n/(n+2)(17mn/(n+2))l—m,,/(n+2)

o ba(1=b,) "
SHminf gy

We consider the function ¢(x):=x%1—x)'"% xe[0,1], which is
strictly increasing in [0,b] and strictly decreasing in [b, 1] with
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#(0)=¢(1)=0. There exist at most two solutions 0<m(b,y)<b<
M(b,y) <1 of ¢(x)=yb?(1—b)'"">0. In case y=1, it follows that
m(b, y)=b=M(b, 7).

From the inequality stated above, we obtain

0<m(b,y)<liminfb,<limsup b, < M(b, y) <1.
nel nel

2. Let <1 be given. Then we may choose some a € (0, 1) such that
limsup,,., (E,/E(,,;)=0. Further, since lim,_, E,”"=1, we may choose
a sequence of positive numbers (J,),.n such that llm"€ N OVr=1 and
1il’nn el (5}1/En) =

y ([7, Theorem 1]), there exists a sequence of polynomials p,eP,,
ne N, such that

lim sup || f—p, || " < for each compact set Kc A4,

nelN
and
Hf—PnH[—1,1]<E[om]+5n forall neN,.

In view of (1), we obtain that for every compact set K < A4,

=Y ) (=P ) (=2, )
n+2
Z ﬂ;1 ;1] f pn nj(f pn)( n )
Jj=1

SEpnK) [ f=pullc+ (1=, (K) | f=pull—113}
This yields

E,—Ilf~ K
1K) <1 — w1 =Pull ik 12 )’
E[‘x”] +6;7

and, by the properties of (p,), and our choice of (J,), .y, We obtain
liminf, _, u,(K)<1—0. Since 0 < 4 was arbitrary, it follows that

lim inf u,(K) <1 — A

nel
holds for every compact set K< A.

3. Applying part 1 of the proof to B=K, we get

m(pp _y 11(K), y) <liminfu,(K)<1 -4

nel

for every compact set K< 4 with u; , ;7(K)e(0, 1).
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(a) Let #=0. Then y=1, which yields
Mp—1, 1](K) =m(ﬂ[71, 1](K), H<1—-4
for every compact set KcA4 with u; | 4(K)e(0,1). It follows that
U (4)<T—4
(b) Let A=1 and assume that 4 # ¢JJ. Then there exists a compact
subset K< A with u; ; ;1(K) € (0, 1), which implies a contradiction:
0<m(u;_1 11(K),7)<1—4=0.
Proof of Theorem 2. 1. Let liminf, _, E,/*<1.

We show that there exists a subsequence L of (n,), such that

E
limE=1 and  lim —2*1=0.

nel nel n

Since lim sup,,. £,/ =1, it follows that lim sup, . E,/" = 1. Thus, we
may choose a subsequence (7). of (1;), such that for all je N,

1 1 1/ny. 1 1—1/p
E},/nijI—f and <> ]><1—> .
i J J J

By an inductive argument we will show that for every j one of the following
two alternatives must hold:

— there exists some /,e {k,, .., k;, ,} such that

Eyer 1 1 1
<- and E)i=1—-, (6)
E, J d J

— for all ke {k,, ... k; ,} we have

EVms1_1 (7)
n = .
J

To prove this, we let j be fixed and observe that (7) holds for k =k;.
Suppose that (6) does not hold for /;=k;. Then we must have

E”k/+ 1
> )
E,
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and therefore

/(. +1)
(n,. (n,. 1 k
£ M””;E /("‘/“)><,E > 7

ny4 1 n +1 n
L1+ I‘j k

] J

><1 _1'>11//) <1 _1‘>nkj/<nkj+1)
J J
1\!—1/r 1\ V» 1
(1)) 1
J J J

Thus, (7) holds for k=k;+ 1. Now, if we suppose that (6) does not hold
for [;=k;+1, it follows in the same way that (7) holds for k=k;+2.
Proceedmg in this way, we obtain that (6) holds for some /;€ {k;, .., k, |}
or (7) holds for all ke {k;, ...k, }.

If the first alternative holds only for finitely many j, then it follows from
(7) that lim, _ £,/ =1, which contradicts our assumption. Therefore, it
must hold for infinitely many j, and we can choose a subsequence L = (n,),
with the desired properties.

Choosing a =1/p, we see that

E
A:= sup limsup—"—=1

ae(0,1) nel [an]
and our statement follows from part (b) of Theorem 1.

2. Let lim,_ E)/"=1.
Then we may apply part (b) of Theorem 1 to a subsequence L of (n,),
with

hmE L= lim inf it

nel n k— w n

If we choose ae(1/p, 1), it follows immediately that

. E
A:= sup limsup—"—=1,
ae(0,1) nel [on]

and it remains to show that

lim inf —1 <1,

k— o
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Suppose that liminf,_, (E, ,,/E,)=1. Then, for some arbitrary
y€ (0, p), there exists some k, € N such that for all k>k,,

Enk+l <1>V
=Z(—.
E,, p
Since ng . /ny=p>1, we have n,=p‘n,=p*, and thus k<

log(n,)/log(p) for all ke N. It follows that there exist positive constants
M, M,, such that for all k> k, we have

1 p /’(*lEn‘Jrl
M |— | =2E, =FE, 1_[ —
k Oj:() E

Ny nj

[\ 1\ 70og (mo)/log(p) 1Y
>M2<> >M2<> =M2<>’
p P e

which implies a contradiction.

Proof of Theorem 3. For every ne N we have

E,=E,(f)=IRef—RepX(f)+iIm f—Imp*( ) 11,
>max{E,(Re f), E,(Im f)}

and

E,=E,(f)<IRef—py(Ref)+i(Im f—pFIm )
<22 max{E,Re f), E,(Im f)}.

The function f'is regular at some point x,€ [ —1, 1] if and only if its real
part Re f and its imaginary part Im f are both regular at x,. Without loss
of generality, let L' be a subsequence of L such that max{E,(Re f),
E,(Im f)} =E,(Re f) for all ne L'. It follows that

E
2172<E,,(Ref) <E, forall nel,

and therefore we have

lim E,(Re f)/" =1,

nel’

hmwgzmhmbzo’
nel’ En(Ref) nel En
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and

sup lim supw>L sup lim sup Ex —L/i
ae(0,1) nel’ E[ocn](Ref)/zl/zzxe(O,l) nel E[om] 21/2 .

Our statement follows if we apply part (a) of Theorem 1 to the function
Re f and the subsequence L'.

Proof of Theorem 4. 1. We first consider the case r=1, ie,
C,=[-11]

We assume that f is regular at some point x,e [ —1, 1], which implies
that f'is regular in a closed neighbourhood U,(x,) :={z€ C: |z—x,| <1},
t>0, of x,.

It follows from our assumptions that there exists some ¢ <1 such that

(Hf_P:H‘|[71,1])1/m+1)<(1 (8)

holds for all sufficiently large n>n,, ne L.
By the Bernstein—Walsh inequality ([ 9, p. 70]), we have

lpr ()] < ‘|PZ+1”[71, 1] exp((n+1) g(z))

for all ze C. Since f is bounded in U,(x,), one can see that for all suf-
ficiently large n>n,,ne L,

1f(2) =ph DK@+ (2D <2 explglz))  (9)

holds for all ze U,(x,).
Weput I:=[—1,1]n[x,—1t/2,x,+1/2] and denote by u the solution
of the Dirichlet problem in U,(x,)\/ with boundary values

_ [log(2 exp(g(2))), forall ze{z:|z—x,|=1}
~ |log(q) <0, forall zel '

Since u is continuous, there exists some m <0 and some closed neighbour-
hood U,x,), 0 <s<t, such that u(z) <m <0 for all ze Uy(x,).

The functions (1/(n+1)) log | f(z) —p¥, ,(z)| are subharmonic in U,(x,),
and by (8) and (9) we obtain

1
n+1

log | f(z) =pi 12 <su(z)

for all ze {z: |z—x,|=r} vl and all n>n,:=max{n,, n,},neL.
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It follows from majorization principles for subharmonic functions that
|f(2) = pi )V D <exp (u(2)
holds for all ze U,(x,) and all n>n,, ne L. Thus, we have
If =il g <exp(m) <1,

such that (p*, ), converges to f uniformly on K:=[ —1,1] U U(x,).
In particular, the sequence

— +1
p::kJrl(Z)_anJrlZn +"'= I’IEL,

is uniformly bounded on K. Note that for sufficiently large ne L we have
E,>E,_,, which implies that a,_, #0. If cap(K) denotes the logarithmic
capacity or Chebychev constant of K, then cap(K)>cap([ —1,1])=1/2.
Since

(K) <lim i f<|P:+1|K>l/(n+l) lim inf 1
cap(K) <lim inf [ —2+1-% =lim inf————,
nelL |an+1| nel |an+1|l/( b
we get
lim sup |a, ., |V"* P < ! < ! =
[N “cap(K) cap([—1,1])

Let 7T,(x) :=x"+..,neN, denote the nth Chebychev-polynomial of the set
[—1,1]. Then |T,[l; ;. ,;=1/2""", and we obtain a contradiction:

1/n

1 =lim supE,ll/”<lim sup [f=priitan i Tl

nel nel

<lmsup (| f=pi -+ a1 Ty ‘|[71,1])1/n< 1.
nel

2. The idea of the proof for re€(0, 1) is essentially the same as for
r=1 such that we give only the most important steps of it.
We assume that f is regular at some point z,€ C,,.
From results on maximal convergence ([ 9, p. 90]) it follows that

1/n

lim sup || f—pX¥[lg" < |rexp(g)] o

neN

for every compact set Q = {z: g(z) < —log(r)}. Since we have

lim sup ”f_pj+ 1l %/i’]]?L]l]) <r,

nel
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one can show by principles of harmonic majorization that

lim sup || f—pj 1" " < lrexp(g)llo
nel

holds for every compact set Q = {z: g(z) < —log(r)}.

By ([ 8, Theorem 5]), there exists a neighbourhood U(z,) of z, such that
(p¥ . 1)ner converges to f locally uniformly in {z: g(z) < —log(r)} U U(z).
If we put K:={z:g(z) < —log(r)} U U(z,), then, by the Bernstein—-Walsh
Lemma,

lim sup |p¥, I " V<1,
nel

Since cap(K) > cap(C,,)=1/2r, a contradiction is obtained in the same
way as in part 1 of the proof.

Proof of Theorem 5. We apply Theorem 4 to a suitable subsequence L
of (n,),. It is easy to see that

limsup E,"=limsup E,/" =r.

keN neN

Hence, we may choose a subsequence L of (n,), such that lim,_, E/"=r.

By the properties of (n,),, and since re(0, 1), we obtain

nel

1/(n+1)
e+ 1

lim sup E /"D <11m sup £,/ =lim sup £

nel k— o k— o

= lim sup (El/nk+|)nk+1/(m +1) <r’<r,

k — oo

which proves our statement.
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