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We consider the sequence of errors (En( f ))n of best uniform approximation to a
function f # C[&1, 1] by algebraic polynomials. It is shown that the regularity of
f in subsets of [&1, 1] implies certain conditions on the sequence (En( f ))n .
� 1997 Academic Press

1. INTRODUCTION AND STATEMENT OF THE RESULTS

For a given complex-valued function f # C[&1, 1] let

En( f ) :=min
p # Pn

& f&p&[&1, 1]=& f&pn*&[&1, 1]

denote the error of the best uniform approximation pn*=pn*( f ) to f in the
set Pn of algebraic polynomials of degree at most n # N0. By the classical
Weierstrass approximation theorem we know that En( f )z0. The construc-
tion of functions having prescribed error sequences was first treated by
Bernstein [1].

Theorem A (Bernstein; cf. [4, p. 121]). Let be given a sequence (En)n

with Enz0. Then there exists a function f # C[&1, 1] such that En( f )=En

for all n # N0.

Recently, Professor Gaier raised the question of whether the function f
in Theorem A can be constructed such that f is not only continuous on
[&1, 1] but also regular in subsets of [&1, 1]. In the present paper we
show that this is not possible for arbitrary sequences (En)n with Enz0. It
will turn out that the regularity of f in subsets of [&1, 1] implies that there
can not be too abrupt ``jumps'' in the error sequence (En( f ))n .

To state the results, let (En)n be a sequence with Enz0 and

r :=lim sup
n � �

E 1�n
n .
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In the following we denote by f an arbitrary function in C[&1, 1] such
that

En( f )=En for all n # N0 .

Further, let g(z) :=log |z+(z2&1)1�2| denote the Green's function of
[&1, 1]c with pole at � and Cs :=[z: g(z)=log(s)], s�1. For s=1, we
have Cs=[&1, 1], while for s>1 the level curve Cs is given by the bound-
ary of an ellipse with foci at &1 and 1. It is well known ([9, p. 79]) that

1
r
=sup [s: f is holomorphic in the open ellipse bounded by Cs].

1.1. Results for Real-Valued Functions

Theorem 1. Let r=1 and suppose that there exists a subsequence L of
N with limn # L E 1�n

n =1 such that

' :=lim
n # L

En+1

En
<1,

and

* := sup
: # (0, 1)

lim sup
n # L

En

E[:n]

>0.

Let f be real-valued and regular in the open set A/[&1, 1].
Then the following properties hold :

(a) If '=0 and +[&1, 1] denotes the equilibrium distribution of
[&1, 1], then we have

+[&1, 1](A)�1&*.

(b) If *=1, then A=<.

From this result one can derive the following Hadamard-type gap
theorem:

Theorem 2. Let r=1 and suppose that there exists a subsequence
(nk)k # N0

of N such that for all k # N0 ,

nk+1

nk
�\>1
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and

En=Enk+1 for all nk+1�n�nk+1 .

Let f be real-valued.
Then the following properties hold :

(a) If lim infk � � E 1�nk
nk

<1, then f has no regular point in [&1, 1].

(b) If limk � � E 1�nk
nk

=1 and En=O(n&;) for some ;>0, then f has
no regular point in [&1, 1].

In case r # (0, 1), Theorem 5 states an analogous result without needing
the O-condition which is assumed in part (b) of Theorem 2. The method
of proof of Theorem 5 cannot be applied if r=1.

1.2. Results for Complex-Valued Functions

For complex-valued functions f=Re f+i Im f # C[&1, 1], it is easy to
see that f is regular at some point x0 # [&1, 1] if and only if its real part
Re f and imaginary part Im f (defined for x # [&1, 1]) are both regular
at x0 . Thus, Theorems 1 and 2 may be applied to the error sequences of
Re f and Im f to obtain estimates on the ``size'' of sets where f can be
regular.

The following estimates are based on the behaviour of (En)n=(En( f ))n .

Theorem 3. Let r=1 and suppose that there exists a subsequence L of
N with limn # L E 1�n

n =1 such that

' :=lim
n # L

En+1

En
=0,

and

* := sup
: # (0, 1)

lim sup
n # L

En

E[:n]

>0.

Let f be regular in the open set A/[&1, 1].
Then, if +[&1, 1] denotes the equilibrium distribution of [&1, 1], we have

+[&1, 1](A)�1&
*

21�2 .

If En+1 �En tends to zero very rapidly for some subsequence L, it is not
necessary to consider the behaviour of the foregoing errors E[:n] :
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Theorem 4. Let r # (0, 1] and suppose that there exists a subsequence L
of N such that

lim
n # L

E 1�n
n =r and lim sup

n # L
E 1�n+1

n+1 <r.

Then f has no regular point on C1�r .

Remark. In Theorem 4 it is a necessary assumption that limn # L E 1�n
n =r.

It is possible to construct a sequence (En)n with r=1 and a corresponding
function f which is regular in (&1, 1), such that for a suitable subsequence
L we have

lim
n # L

E 1�n+1
n+1 <lim

n # L
E 1�n

n <r.

In case f is regular on [&1, 1], i.e., r<1, one can derive from Theorem
4 the following Hadamard-type gap theorem.

Theorem 5. Let r # (0, 1) and suppose that there exists a subsequence
(nk)k # N0

of N such that for all k # N0

nk+1

nk
�\>1

and

En=Enk+1 for all nk+1�n�nk+1 .

Then f has no regular point on C1�r .

The proof of Theorem 4 and Theorem 5 is based on methods of har-
monic majorization and can be extended to the case of uniform approxima-
tion on more general compact sets in the complex plane.

2. PROOFS

Proof of Theorem 1. Since f is real-valued, there exists for each n # N0

a set An of alternation points

&1�xn, 1< } } } <xn, n+2�1

of the error function f&pn*, i.e.,

( f&pn*)(xn, j)=\(&1) j En for all j # [1, ..., n+2].
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The set An defines an extremal signature for f&pn* (cf. [6, p. 76]) which
consists of exactly n+2 points. We put wn(x) :=>n+2

j=1 (x&xn, j) and
tn :=(�n+2

j=1 (1�|w $n(xn, j)| ))&1. By

+n(xn, j) :=
tn

|w $n(xn, j)|
, j # [1, ..., n+2],

a discrete measure +n of total mass one is defined on the set An , which is
associated with the extremal signature on An ([6, p. 78]). From properties
of extremal signatures ([6, p. 76]) it is known that

:
n+2

j=1

+n(xn, j) ( f&pn*)(xn, j) p(xn, j)=0

holds for every p # Pn .

1. First, we consider the measures +n , n # L.
Let be given a Borel set B/[&1, 1] with b :=+[&1, 1] (B) # (0, 1).
Let mn denote the number of points in B & An and let bn :=+n(B).
In ([2, Theorem 1]) it was proved that certain subsequences of the

unit counting measures of any n+2 Fekete points of [x # [&1, 1]:
|( f&pn*)(x)|=En] converge to +[&1, 1] in the sense of weak convergence.
Following the proof of Theorem 1 in [2] one can see that the same holds
for the subsequence L of the unit counting measures of An . Hence, we
obtain

lim
n # L

mn

n+2
=b=+[&1, 1](B). (2)

We have (cf. for example [2, p. 362])

tn=min
p # Pn

&xn+1&p(x)&An�min
p # Pn

&xn+1&p(x)&[&1, 1]=
1
2n .

Since An contains an extremal signature for f&pn*, it follows that
([6, p. 78])

En=min
p # Pn

& f&p&[&1, 1]=min
p # Pn

& f&p&An ,

and we can follow an argument of Kroo� and Saff ([3, Lemma 2.3]) to
obtain

#n :=
tn

1�2n�
En&En+1

En+En+1

=
1&En+1�En

1+En+1�En
, (3)
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and therefore

# :=lim inf
n # L

#n�
1&'
1+'

>0.

Let Vn denote the n+2 point discriminant of the set An , i.e.,

Vn :=\ `
n+2

j=1

`
n+2

k=j+1

|xn, j&xn, k |+
2

= `
n+2

j=1

|w $n(xn, j)|.

We show that

tn�\Vn
bmn

n (1&bn)n+2&mn

mmn
n (n+2&mn)n+2&mn+

1�(n+2)

.

To prove this, let n be fixed and consider the problem of finding the
supremum of

t=t(!)=\ :
n+2

j=1

1
!j+

&1

among all !=(!1 , ..., !n+2) satisfying the restrictions

!j>0 for all j # [1, ..., n+2],

V(!) := `
n+2

j=1

!j=Vn and +(!) :=t(!) :
j # J

1
!j

=bn ,

where J/[1, ..., n+2] is an arbitrary subset of indices consisting of mn

points. If !j � 0 or !j � � for some j # [1, ..., n+2], we obtain t(!) � 0,
and therefore a global maximum of t must be attained for some point !*.
By the theorem of Lagrange, there exist *1 , *2 # R such that

�t
�!j

(!*)+*1

�V
�!j

(!*)+*2

�+
�!j

(!*)=0 for all j # [1, ..., n+2].

A simple computation gives

!j*=
t(!*)mn

bn
, for all j # J

and

!j*=
t(!*)(n+2&mn)

1&bn
, for all j # [1, ..., n+2]"J.
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Thus, we have

Vn= `
n+2

j=1

!j*=\t(!*) mn

bn +
mn

\t(!*)(n+2&mn)
1&bn +

n+2&mn

,

which yields

tn=t( |w$n(xn, 1)| , ..., |w$n(xn, n+2)| )�t(!*)

=\Vn
bmn

n (1&bn)n+2&mn

mmn
n (n+2&mn)n+2&mn+

1�(n+2)

. (4)

If 2n+2 denotes the discriminant of the n+2 Fekete points of [&1, 1],
then Vn�2n+2 , and by ([5, p. 422]) it follows that

2n+2tconst(n+2)n+2+1�4 1
2n2+2n

. (5)

Combining (3), (4), and (5) gives

#n
1
2n=tn�\Vn

bmn
n (1&bn)n+2&mn

mmn
n (n+2&mn)n+2&mn+

1�(n+2)

�(2n+2

bmn
n (1&bn)n+2&mn

mmn
n (n+2&mn)n+2&mn+

1�(n+2)

�\2 const (n+2)n+2+1�4 1

2n2+2n

bmn
n (1&bn)n+2&mn

mmn
n (n+2&mn)n+2&mn+

1�(n+2)

for all sufficiently large n # N. By (2) it follows that

0<
1&'
1+'

�#=lim inf
n # L

#n

�lim inf
n # L \(n+2)n+2 bmn

n (1&bn)n+2&mn

mmn
n (n+2&mn)n+2&mn+

1�(n+2)

=lim inf
n # L

bmn �(n+2)
n (1&bn)1&mn�(n+2)

(mn�(n+2))mn�(n+2) (1&mn�(n+2))1&mn �(n+2)

�lim inf
n # L

bb
n(1&bn)1&b

bb(1&b)1&b .

We consider the function ,(x) :=xb(1&x)1&b, x # [0, 1], which is
strictly increasing in [0, b] and strictly decreasing in [b, 1] with
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,(0)=,(1)=0. There exist at most two solutions 0<m(b, #)�b�
M(b, #)<1 of ,(x)=#bb(1&b)1&b>0. In case #=1, it follows that
m(b, #)=b=M(b, #).

From the inequality stated above, we obtain

0<m(b, #)�lim inf
n # L

bn�lim sup
n # L

bn�M(b, #)<1.

2. Let %<* be given. Then we may choose some : # (0, 1) such that
lim supn # L (En�E[:n])�%. Further, since limn # L E 1�n

n =1, we may choose
a sequence of positive numbers ($n)n # N such that limn # N $1�n

n =1 and
limn # L ($n �En)=0.

By ([7, Theorem 1]), there exists a sequence of polynomials pn # Pn ,
n # N, such that

lim sup
n # N

& f&pn&1�n
K <1 for each compact set K/A,

and

& f&pn&[&1, 1]�E[:n]+$n for all n # N0 .

In view of (1), we obtain that for every compact set K/A,

E 2
n= :

n+2

j=1

+n(xn, j) ( f&pn*)(xn, j) ( f&pn*)(xn, j)

= :
n+2

j=1

+n(xn, j) ( f&pn*)(xn, j)( f&pn)(xn, j)

�En[+n(K) & f&pn&K+(1&+n(K)) & f&pn&[&1, 1]]

�En[+n(K) & f&pn&K+(1&+n(K)) (E[:n]+$n)].

This yields

+n(K)�1&
En&& f&pn &K +n(K)

E[:n]+$n
,

and, by the properties of ( pn)n and our choice of ($n)n # N , we obtain
lim infn # L +n(K)�1&%. Since %<* was arbitrary, it follows that

lim inf
n # L

+n(K)�1&*

holds for every compact set K/A.

3. Applying part 1 of the proof to B=K, we get

m(+[&1, 1](K), #)�lim inf
n # L

+n(K)�1&*

for every compact set K/A with +[&1, 1] (K) # (0, 1).
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(a) Let '=0. Then #=1, which yields

+[&1, 1](K)=m(+[&1, 1](K), 1)�1&*

for every compact set K/A with +[&1, 1](K) # (0, 1). It follows that
+[&1, 1](A)�1&*.

(b) Let *=1 and assume that A{<. Then there exists a compact
subset K/A with +[&1, 1](K) # (0, 1), which implies a contradiction:

0<m(+[&1, 1](K), #)�1&*=0.

Proof of Theorem 2. 1. Let lim infk # N E 1�nk
nk

<1.
We show that there exists a subsequence L of (nk)k such that

lim
n # L

E 1�n
n =1 and lim

n # L

En+1

En
=0.

Since lim supn # N E 1�n
n =1, it follows that lim supk # N E 1�nk

nk
=1. Thus, we

may choose a subsequence (nkj) j # N of (nk)k such that for all j # N,

E1�nkjnkj
�1&

1
j

and \1
j+

1�nkj
>\1&

1
j +

1&1�\

.

By an inductive argument we will show that for every j one of the following
two alternatives must hold:

�� there exists some lj # [kj , ..., kj+1] such that

Enlj
+1

Enlj

�
1
j

and E 1�nljnlj
�1&

1
j
, (6)

�� for all k # [kj , ..., kj+1] we have

E 1�nk
nk

�1&
1
j
. (7)

To prove this, we let j be fixed and observe that (7) holds for k=kj .
Suppose that (6) does not hold for lj=kj . Then we must have

Enkj
+1

Enkj

>
1
j
,
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and therefore

E
1�(nkj+1)

nkj+1
�E

1�(nkj+1)

nkj
+1 �\1

j
Enkj+

1�(nkj+1)

�\1&
1
j+

1&1�\

\1&
1
j+

nkj
�(nkj+1)

�\1&
1
j+

1&1�\

\1&
1
j+

1�\

=1&
1
j
.

Thus, (7) holds for k=kj+1. Now, if we suppose that (6) does not hold
for lj=kj+1, it follows in the same way that (7) holds for k=kj+2.
Proceeding in this way, we obtain that (6) holds for some lj # [kj , ..., kj+1]
or (7) holds for all k # [kj , ..., kj+1].

If the first alternative holds only for finitely many j, then it follows from
(7) that limk # N E 1�nk

nk
=1, which contradicts our assumption. Therefore, it

must hold for infinitely many j, and we can choose a subsequence L=(nlj) j

with the desired properties.
Choosing :=1�\ , we see that

* := sup
: # (0, 1)

lim sup
n # L

En

E[:n]

=1

and our statement follows from part (b) of Theorem 1.

2. Let limk # N E 1�nk
nk

=1.
Then we may apply part (b) of Theorem 1 to a subsequence L of (nk)k

with

lim
n # L

En+1

En
=lim inf

k � �

Enk+1

Enk

.

If we choose : # (1�\ , 1), it follows immediately that

* := sup
: # (0, 1)

lim sup
n # L

En

E[:n]

=1,

and it remains to show that

lim inf
k � �

Enk+1

Enk

<1.
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Suppose that lim infk � �(Enk+1 �Enk
)=1. Then, for some arbitrary

# # (0, ;), there exists some k1 # N such that for all k�k1 ,

Enk+1

Enk

�\1
\+

#

.

Since nk+1�nk�\>1, we have nk�\kn0�\k, and thus k�
log(nk)�log(\) for all k # N. It follows that there exist positive constants
M1 , M2 , such that for all k�k1 we have

M1 \ 1
nk+

;

�Enk
=En0

`
k&1

j=0

Enj+1

Enj

�M2 \1
\+

#k

�M2 \1
\+

#(log (nk)�log(\))

=M2 \ 1
nk+

#

,

which implies a contradiction.

Proof of Theorem 3. For every n # N we have

En=En( f )=&Re f&Re pn*( f )+i(Im f&Im pn*( f ))&[&1, 1]

�max[En(Re f ), En(Im f )]

and

En=En( f )�&Re f&pn*(Re f )+i(Im f&pn*(Im f ))&[&1, 1]

�21�2 max[En(Re f ), En(Im f )].

The function f is regular at some point x0 # [&1, 1] if and only if its real
part Re f and its imaginary part Im f are both regular at x0 . Without loss
of generality, let L$ be a subsequence of L such that max[En(Re f ),
En(Im f )]=En(Re f ) for all n # L$. It follows that

En

21�2�En(Re f )�En for all n # L$,

and therefore we have

lim
n # L$

En(Re f )1�n=1,

lim
n # L$

En+1(Re f )
En(Re f )

�21�2 lim
n # L

En+1

En
=0,
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and

sup
: # (0, 1)

lim sup
n # L$

En(Re f )
E[:n](Re f )

�
1

21�2 sup
: # (0, 1)

lim sup
n # L

En

E[:n]

=
1

21�2 *.

Our statement follows if we apply part (a) of Theorem 1 to the function
Re f and the subsequence L$.

Proof of Theorem 4. 1. We first consider the case r=1, i.e.,
C1�r=[&1, 1].

We assume that f is regular at some point x0 # [&1, 1], which implies
that f is regular in a closed neighbourhood Ut(x0) :=[z # C : |z&x0 |�t],
t>0, of x0 .

It follows from our assumptions that there exists some q<1 such that

(& f&p*n+1&[&1, 1])1�(n+1)�q (8)

holds for all sufficiently large n�n1 , n # L.
By the Bernstein�Walsh inequality ([9, p. 70]), we have

| p*n+1(z)|�&p*n+1&[&1, 1] exp((n+1) g(z))

for all z # C. Since f is bounded in Ut (x0), one can see that for all suf-
ficiently large n�n2 , n # L,

| f (z)&p*n+1(z)| 1�(n+1)�( | f (z)|+| p*n+1(z)| )1�(n+1)�2 exp(g(z)) (9)

holds for all z # Ut (x0).
We put I :=[&1, 1] & [x0&t�2, x0+t�2] and denote by u the solution

of the Dirichlet problem in Ut (x0)"I with boundary values

u(z)={log(2 exp(g(z))),
log(q)<0,

for all z # [z: |z&x0 |=t]
for all z # I

.

Since u is continuous, there exists some m<0 and some closed neighbour-
hood Us(x0), 0<s<t, such that u(z)�m<0 for all z # Us(x0).

The functions (1�(n+1)) log | f (z)&p*n+1(z)| are subharmonic in Ut (x0),
and by (8) and (9) we obtain

1
n+1

log | f (z)&p*n+1(z)|�u(z)

for all z # [z: |z&x0 |=r] _ I and all n�n0 :=max[n1 , n2], n # L.
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It follows from majorization principles for subharmonic functions that

| f (z)&p*n+1(z)| 1�(n+1)�exp (u(z))

holds for all z # Ut (x0) and all n�n0 , n # L. Thus, we have

& f&p*n+1&
1�(n+1)
Us (x0) �exp(m)<1,

such that ( p*n+1)n # L converges to f uniformly on K :=[&1, 1] _ Us(x0).
In particular, the sequence

p*n+1(z)=an+1zn+1+ } } } , n # L,

is uniformly bounded on K. Note that for sufficiently large n # L we have
En>En+1 , which implies that an+1{0. If cap(K ) denotes the logarithmic
capacity or Chebychev constant of K, then cap(K )>cap([&1, 1])=1�2.
Since

cap(K )�lim inf
n # L \&p*n+1&K

|an+1| +
1�(n+1)

=lim inf
n # L

1
|an+1 | 1�(n+1) ,

we get

lim sup
k � �

|an+1 | 1�(n+1)�
1

cap(K)
<

1
cap([&1, 1])

=2.

Let Tn(x) :=xn+..., n # N, denote the n th Chebychev-polynomial of the set
[&1, 1]. Then &Tn&[&1, 1]=1�2n&1 , and we obtain a contradiction:

1=lim sup
n # L

E 1�n
n �lim sup

n # L
& f&p*n+1+an+1Tn+1 &1�n

[&1, 1]

�lim sup
n # L

(& f&p*n+1&[&1, 1]+&an+1Tn+1&[&1, 1])1�n<1.

2. The idea of the proof for r # (0, 1) is essentially the same as for
r=1 such that we give only the most important steps of it.

We assume that f is regular at some point z0 # C1�r .
From results on maximal convergence ([9, p. 90]) it follows that

lim sup
n # N

& f&pn*&1�n
Q �&r exp(g)&Q

for every compact set Q/[z: g(z)<&log(r)]. Since we have

lim sup
n # L

& f&p*n+1&1�(n+1)
[&1, 1] <r,
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one can show by principles of harmonic majorization that

lim sup
n # L

& f&p*n+1&1�(n+1)
Q <&r exp(g)&Q

holds for every compact set Q/[z: g(z)<&log(r)].
By ([8, Theorem 5]), there exists a neighbourhood U(z0) of z0 such that

( p*n+1)n # L converges to f locally uniformly in [z: g(z)<&log(r)] _ U(z0).
If we put K :=[z: g(z)<&log(r)] _ U(z0), then, by the Bernstein�Walsh
Lemma,

lim sup
n # L

&p*n+1&
1�(n+1)
K �1.

Since cap(K )>cap(C1�r)=1�2r , a contradiction is obtained in the same
way as in part 1 of the proof.

Proof of Theorem 5. We apply Theorem 4 to a suitable subsequence L
of (nk)k . It is easy to see that

lim sup
k # N

E 1�nk
nk

=lim sup
n # N

E 1�n
n =r.

Hence, we may choose a subsequence L of (nk)k such that limn # L E 1�n
n =r.

By the properties of (nk)k , and since r # (0, 1), we obtain

lim sup
n # L

E 1�(n+1)
n+1 �lim sup

k � �
E1�(nk+1)

nk+1 =lim sup
k � �

E 1�(nk+1)
nk+1

=lim sup
k � �

(E 1�nk+1
nk+1

)nk+1 �(nk+1)�r \<r,

which proves our statement.
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